## Home advantage



#### **B3:** Go on, go green

#### **Speakers:**

#### **Sam Hunt**

Senior Associate, b:ssec

#### **Robert Greene**

Head of Development, A2Dominion

**Chair:** 

#### **Gordon Callaway**

Managing Director Callaway Energy Consulting









# London Development Conference

# Viable Communal Heating Systems

#### 4<sup>th</sup> December 2012

Sam Hunt MEng CEng MCIBSE – b:ssec

<u>sam@bssec.co.uk</u> – 07891 850821

## Introduction

**Desservices** building services sustainability & environmental consultancy Itd

b:ssec has been involved in the implementation of communal heating systems through:

- Energy strategies (incl. for planning).
- Due diligence support for clients.
- Post project reviews.

This presentation describes the following aspects of communal heating systems:

- Context planning and policy drivers for communal heating.
- Design Approach factors affecting viability.

**Description** building services sustainability & environmental consultancy Itd



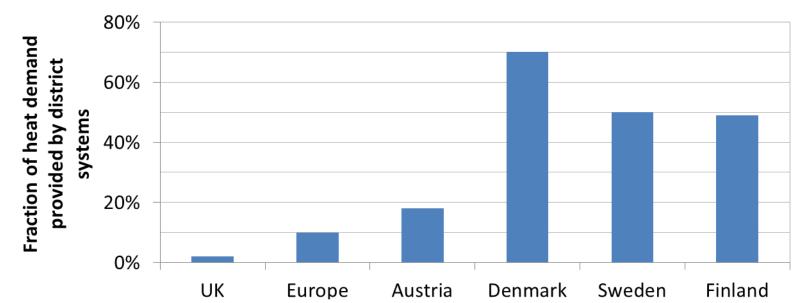
## **1. CONTEXT**

# **Advantages of District Heating**

District and communal heating systems allow:

- The use of technologies which are typically not technically viable at the scale of individual homes (e.g. biomass or waste-toenergy).
- Economies of scale.
- Centralisation of fuel systems and maintenance.
- Easier adaptation to future technologies.
- Use of waste heat from industrial processes.
- Combination of heat users with matching patterns of demand.








## **National Policy**

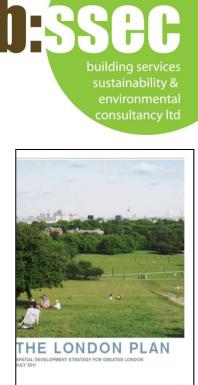
SCHC building services sustainability & environmental consultancy Itd

- The Government has a legal obligation to achieve an 80% carbon reduction by 2050 compared to 1990.
- The Government's current Carbon Plan projects 10% to 50% of England's heat demand met by district systems in 2050.
- The National Planning Policy Framework (NPPF) requires local councils to identify opportunities for decentralised low/zero carbon energy systems.



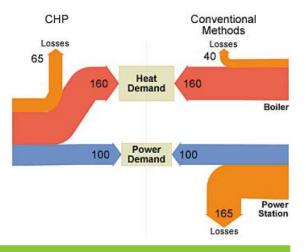
## London Plan 2011 – Carbon




Policy 5.2 has the following phased carbon requirements:

| Year      | Improvement on the Target Emission Rate of<br>Part L 2010 of the Building Regulations |
|-----------|---------------------------------------------------------------------------------------|
| 2010-2013 | 25%                                                                                   |
| 2013-2016 | 40%                                                                                   |
| 2016-2031 | Zero carbon                                                                           |

- Major development proposals must have energy assessments set out according to the following hierarchy:
  - 1) Be Lean Energy efficiency measures which improve on Building Regulations.
  - Be Clean use efficient decentralised energy such as combined heat and power (CHP).
  - 3) Be Green use renewable energy (e.g. solar).

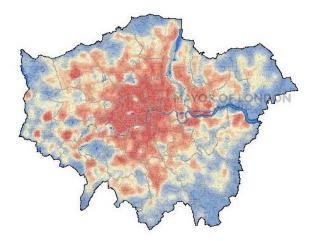

# London Plan 2011 – District Energy

- Policy 5.6 requires that development proposals should evaluate the feasibility of combined heat and power (CHP) systems.
- It also requires major development proposals to select energy systems according to the following hierarchy:
  - 1) Connect to existing heating or cooling networks.
  - 2) Site wide CHP network.
  - 3) Communal heating and cooling



MAYOR OF LONDO

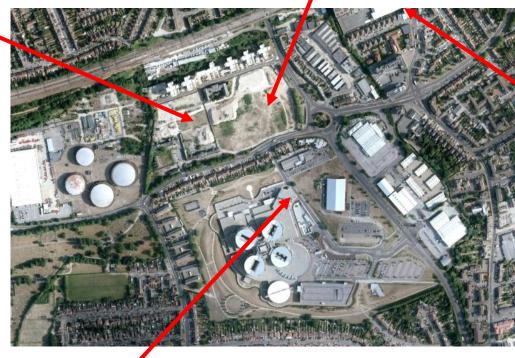
**Description** building services sustainability & environmental consultancy Itd




## **2. DESIGN APPROACH**

# Mapping




- To meet GLA requirements, two elements of heat mapping should occur:
  - Mapping of the neighbourhood.
  - Mapping of the development.
- Tools for neighbourhood mapping:
  - <u>http://chp.decc.gov.uk/development</u>
    <u>map/</u>
  - <u>http://www.londonheatmap.org.uk</u>
  - Planning applications
  - Local authority contacts
  - Google Earth
  - On-the-ground surveying



# Mapping the Neighbourhood

New 450 home housing association development with district heating

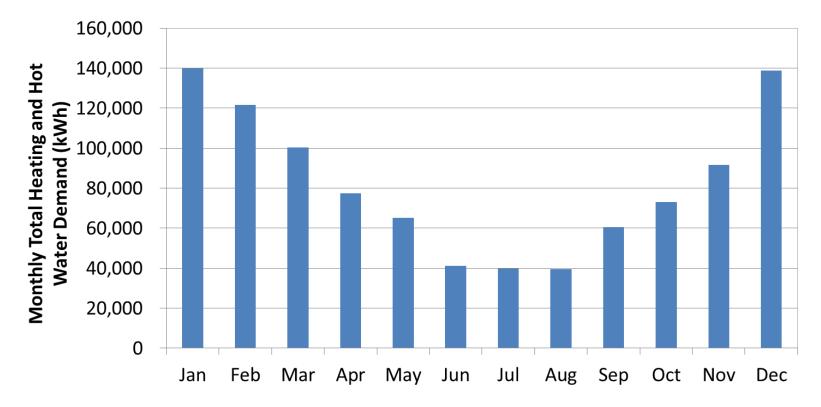
New 500 home residential development with district heating



Town centre identified as a district heating opportunity area

I-SSA

building services sustainability &

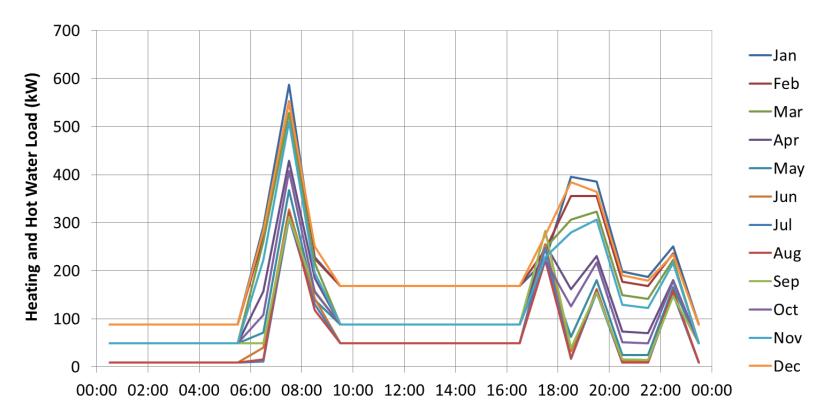

environmental

consultancy ltd

Energy centre with CHP for hospital 500 m

# Mapping the Development (1)

- Heat demand profiles should be predicted:
  - Over the year.
  - Over typical days.



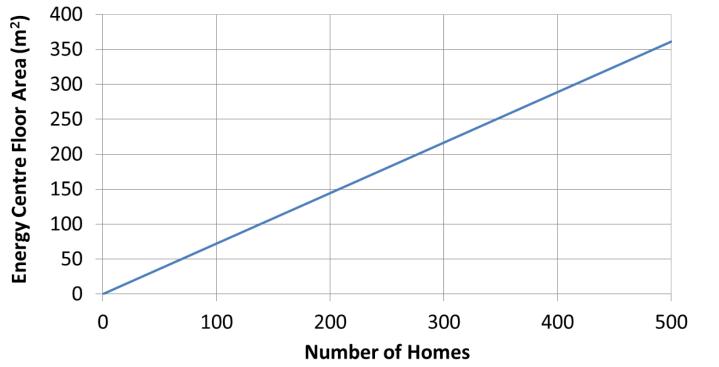

• Care should be taken in the use of standard calculation tools such as SAP and SBEM.



# Mapping the Development (2)

Housing associations can help designers by providing operational gas data from other developments.




building services sustainability &

environmental consultancy ltd

- Low carbon technologies benefit from constant demand.
- Demand can be smoothed out through central heat storage and local domestic hot water storage.

# **The Energy Centre**

• Sufficient space should be provided for the energy centre early in the design process.



Size depends on technology type, heat storage and fuel type.

building services sustainability &

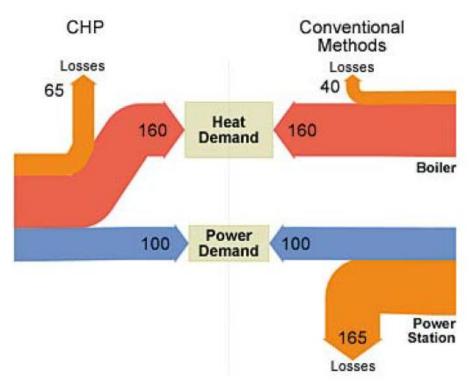
environmental consultancy ltd

- Thought must be given to access arrangements for maintenance and fuel delivery.
- The flue position and height must also be considered.

## **Heat Distribution**

- Pipework should have a minimum of a 30 year design life.
- Steel pipework is recommended for heat network mains, branches and consumer connections for new developments.
- The system should include automatic leak detection.
- Sizing, energy and cost calculations must take into account network heat losses.
- Heat network losses are affected by the layout of the network and pipe insulation.
- A new development with 60 homes per hectare would be expected to have 5-10% distribution heat losses.

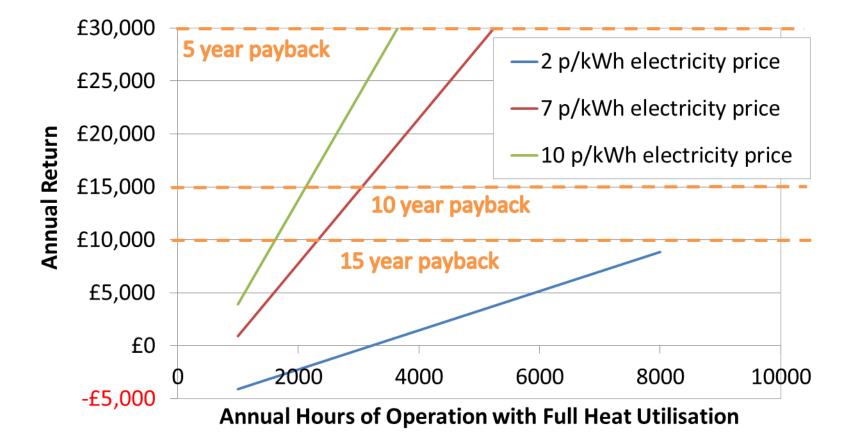





# Gas Combined Heat and Power (1)

building services sustainability & environmental

consultancy ltd


- Gas combined heat and power (CHP) achieves carbon savings by generating electricity and using the waste heat for space heating and hot water.
- It is the most widely implemented technology in district heating for new developments.



## Gas Combined Heat and Power (2)

Economic operation of gas CHP depends on:

- The number of hours for which it can operate and have its waste heat fully used.
- The price at which electricity from the unit is sold.



building services sustainability & environmental consultancy ltd

5

## **Biomass Heating**

#### Advantages:

- Subsidised by the Renewable Heat Incentive.
- Achieves higher carbon savings than gas CHP.

#### **Disadvantages:**

- Maintenance requirements are greater than gas CHP.
- Many London boroughs object to the technology on the grounds of air quality and transport impacts.

#### **Important Design Factors:**

- Avoid over-sizing (like gas CHP).
- Ensure well-defined fuel standards.
- Fuel store design and sizing.

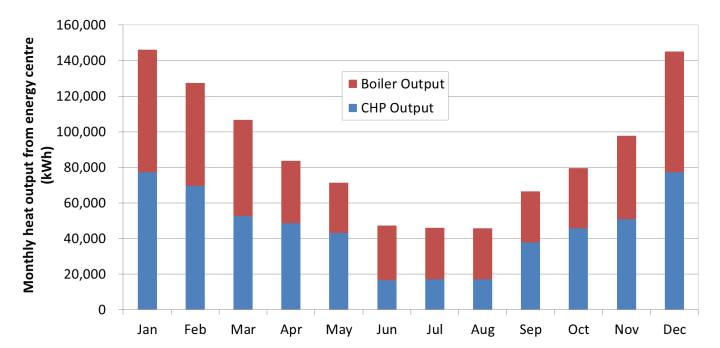




Biomass and Air Quality Guidance for Local Authorities England and Wales

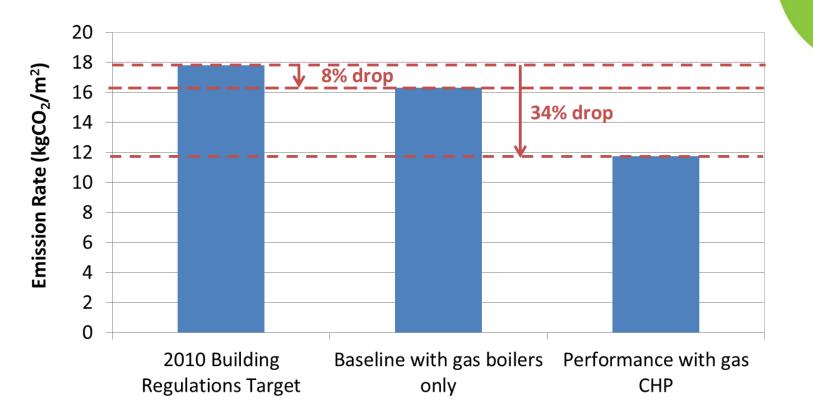
## **Other Technologies**

• **Biomass CHP** – widely implemented in Europe with some successfully operational units in the UK.


sustainability & environmental

consultancy ltd

- Fuel cells efficiently generate electricity using natural gas or hydrogen.
- Industrial processes e.g. waste to energy plants are major potential sources of heat.
- Heat pumps can be used centrally or in individual homes as part of an ambient heat loop.
- Solar hot water has been used on a large scale in district systems in Europe.
- **Solar PV** can be a cost-effective, flexible supplement to district energy systems.


# Example – CHP Sizing

- 200 apartments.
- Apartment floor area =  $76.5 \text{ m}^2$ .
- Gas fired district heating.
- Load matching shows that a 70 kW<sub>e</sub> / 110 kW<sub>th</sub> gas CHP unit could provide 52% of space heating and domestic hot water, operating 5,000 hours per year.



building services sustainability & environmental consultancy Itd

## **Example – Carbon Performance**



building services sustainability &

environmental consultancy ltd

- Further carbon savings could be achieved through efficiency improvements (e.g. MVHR) or solar PV.
- An alternative lead heat source could be used (e.g. biomass).
- Supplementing gas CHP with solar hot water or biomass, or enlarging the CHP unit are not recommended.

## Guidance

- National Housing Federation (2010) – Lifetime costs of installing renewable energy technologies.
- Mayor of London (in development) District Energy Manual for London.
- Carbon Trust (2010) Introducing combined heat and power



A new generation of energy and carbon saving

building services sustainability & environmental consultancy Itd

I SSA



## **Thank You**

## Sam Hunt – b:ssec <u>sam@bssec.co.uk</u> – 07891 850821 www.bssec.co.uk

#### **Communal Heating – The client experience**

## **Robert Greene FCIOB MRICS Head of Development**



- A2Dominion Our Experience
- G15 Communal Heating Research Project
- Questions



## A2Dominion Group

- 34,000 homes
- London & S.E
- 900 Staff
- Member of G15





- Almost 2000 homes with Communal Heating
- 6000 home development pipeline 5 years
- 70% will use Communal heating systems



#### Communal heating at Dominion Plaza (108 units)

- A2D as developer
- D&B Contractor
- Energy specification?
- Expert design support?
- Quality assurance?
- Commissioning?
- Energy Provider?





- Best Gas tariff?
- Right documents?
- Metering?
- Billing System?





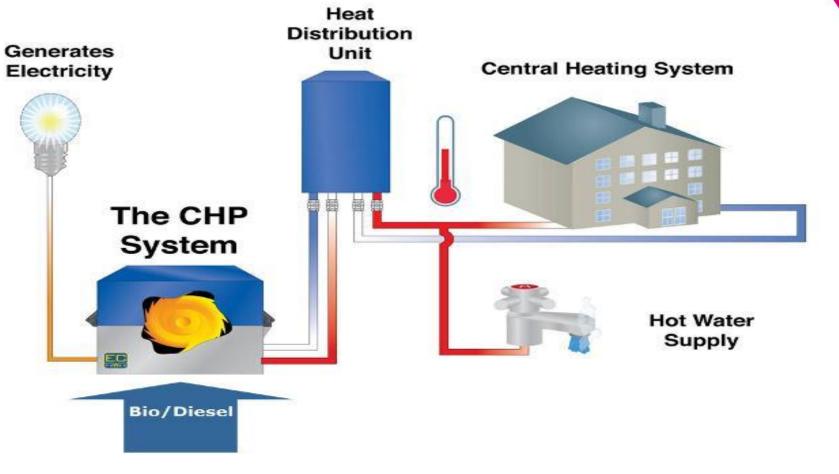


A2Dominion has.....

- Appointed Energy Consultant
- A2D Energy Specification with ER's
- Sustainability (Pre-contract) Sign-off
- Joined-up client teams and 360° feedback
- Invested in Quality Assurance Team



#### And......


- Legal heat agreement
- Tenancy and Leases agreements amended
- Energy procurement (better tariff deals)
- Appointed energy contractor
- Installing 'Smart' Prepayment metering
- Energy provider?



G15 and the Communal Heating Research

- G15 London largest Housing Associations
- Over 420,000 homes in London
- 134 Schemes with Communal (Decentralised) heating
- Approx. 11,000 units completed/on-site







G15 working together

- Gathering facts
- Sharing experience
- Case studies
- Researcher
- Analyse
- Publish findings





#### **Research Case Studies – 8**

- Interviews with development project team, maintenance staff and housing team
- Design information
- As built Mechanical and Electrical details
- In use consumption and tariff data
- Lifecycle costing

#### **Generic Case Studies – 40**

- Scheme information
- · Additional information on successes/ failures

#### G15 installations - 300

• Basic scheme information - numbers



## G15 Communal heating experience (2008-11 Programme)

57 Schemes

- 11 CHP Engines
- 19% of programme

#### **CHP Engine**





## G15 Communal heating experience (2008-11 Programme)

57 Schemes

- 28 Biomass boilers
- 49% of schemes

#### **Biomass Boiler**





#### G15 Communal heating experience (2008-2011)

From 20 units
 To over 400 units







## G15 Communal heating experience (2008-2011)

#### 24 topics areas identified by the group:

|   | Technical             |   | Business and                     |  |  |  |  |  |  |  |  |
|---|-----------------------|---|----------------------------------|--|--|--|--|--|--|--|--|
|   |                       |   | administration                   |  |  |  |  |  |  |  |  |
| 0 | Design                | 0 | Forecasting                      |  |  |  |  |  |  |  |  |
| 0 | Installation          | 0 | Business modelling               |  |  |  |  |  |  |  |  |
| 0 | Phasing               | 0 | Tariff setting                   |  |  |  |  |  |  |  |  |
| 0 | Commissioning         | 0 | Legal framework                  |  |  |  |  |  |  |  |  |
| 0 | Operation             | 0 | Metering                         |  |  |  |  |  |  |  |  |
| 0 | Service failure       | 0 | Billing                          |  |  |  |  |  |  |  |  |
| 0 | Maintenance           | 0 | Debt management                  |  |  |  |  |  |  |  |  |
| 0 | Compliance            | 0 | Contract drafting and management |  |  |  |  |  |  |  |  |
| 0 | Data/ efficiency      | 0 | Service charges                  |  |  |  |  |  |  |  |  |
| 0 | Collection and meters | 0 | Management information           |  |  |  |  |  |  |  |  |
|   |                       | 0 | Procurement of energy            |  |  |  |  |  |  |  |  |
|   |                       | 0 | Resident management              |  |  |  |  |  |  |  |  |
|   |                       | 0 | Overheating                      |  |  |  |  |  |  |  |  |
|   |                       | 0 | Fuel poverty                     |  |  |  |  |  |  |  |  |
|   |                       |   |                                  |  |  |  |  |  |  |  |  |



|                               | A2Dominion | Affinity Sutton | AmicusHorizon | Catalyst | Circle | East Thames | Family Mosaic | Genesis | Hyde | L&Q | Metropolitan | Network | Notting Hill | Peabody | Southern | Priority score |
|-------------------------------|------------|-----------------|---------------|----------|--------|-------------|---------------|---------|------|-----|--------------|---------|--------------|---------|----------|----------------|
|                               | К          | L               | М             |          | 0      | А           | В             | С       | D    | E   | F            | G       | Н            | I       | J        |                |
| Design                        | Н          | Н               | Н             |          | Н      |             |               | Н       |      |     | Н            |         | Н            |         | Н        | 24             |
| Installation                  | L          | М               | Н             |          | L      |             |               | Н       |      |     | L            |         | Н            |         | М        | 16             |
| Phasing                       | М          | М               | М             |          | М      |             |               | L       |      |     | L            |         | М            |         | L        | 13             |
| Commissioning                 | Н          | Н               | Н             |          | М      |             |               | Н       |      |     | М            |         | Н            |         | Н        | 22             |
| Operation                     | М          | Н               | Н             |          | Н      |             |               | Н       |      |     | М            |         | Н            |         | L        | 20             |
| Service failure               | М          | М               | М             |          | М      |             |               | М       |      |     | М            |         | Μ            |         | М        | 16             |
| Maintenance                   | н          | Н               | Н             |          | Н      |             |               | Н       |      |     | Н            |         | Н            |         | М        | 23             |
| Compliance                    | L          | М               | L             |          | L      |             |               | L       |      |     | L            |         | L            |         | L        | 9              |
| Data/ efficiency              | М          | М               | М             |          | М      |             |               | Н       |      |     | М            |         | Μ            |         | М        | 17             |
| Collection/ meters            | Н          | М               | Н             |          | Н      |             |               | М       |      |     | Н            |         | М            |         | Н        | 21             |
| Forecasting                   | L          | М               | L             |          | L      |             |               | L       |      |     | L            |         | L            |         | L        | 9              |
| Business modelling            | L          | L               | L             |          | L      |             |               | М       |      |     | L            |         | L            |         | L        | 9              |
| Tariff setting                | Н          | Н               | Н             |          | Н      |             |               | Н       |      |     | Н            |         | Н            |         | М        | 23             |
| Legal framework               | L          | М               | М             |          | L      |             |               | L       |      |     | L            |         | Н            |         | М        | 13             |
| Metering                      | H          | н               | Н             |          | Н      |             |               | Н       |      |     | Н            |         | М            |         | Н        | 23             |
| Billing                       | Н          | Н               | Н             |          | Н      |             |               | Н       |      |     | Н            |         | Н            |         | М        | 23             |
| Debt management               | М          | Н               | М             |          | Н      |             |               | Н       |      |     | Н            |         | Н            |         | H        | 22             |
| Contract management/ drafting | М          | Н               | Н             |          | М      |             |               | L       |      |     | Н            |         | М            |         | М        | 18             |
| Service charges               | Н          | Н               | H             |          | М      |             |               | L       |      |     | Н            |         | М            |         | М        | 19             |
| Management information        | L          | М               | L             |          | L      |             |               | L       |      |     | L            |         | L            |         | L        | 9              |
| Procurement of energy         | L          | Н               | L             |          | L      |             |               | М       |      |     | L            |         | М            |         | L        | 12             |
| Resident management           | Н          | Н               | Н             |          | Н      |             |               | Н       |      |     | Н            |         | М            |         | L        | 21             |
| Overheating                   | М          | L               | М             |          | Н      |             |               | М       |      |     | Н            |         | Н            |         | L        | 17             |
| Fuel poverty                  | Н          | н               | Н             |          | Н      |             |               | Н       |      |     | М            |         | М            |         | L        | 20             |

azdominion

Agreed focus for researchers

- Design Specification and strategy
- Metering and billing
- Commissioning and maintenance



What's next....

- Appoint Researcher/Consultant
- Gather/Analyse Information (Jan/Feb)
- Draft Report (March)
- Publish Findings (April/May)



Thank you

## Questions



## Home advantage





# Your feedback is important to us!

Thank you for attending and please don't forget to complete your evaluation form and hand it to a member of Federation staff before you leave.



